Pilot-Scale Demonstration of Ilmenite Processing Technology – Project Update

June 7, 2017
Mining & Reclamation Classroom
Chisholm, MN

M. Mlinar
Table of Contents

- NRRI Approach
- Project Overview
- Project Results
- Path Forward
The NRRI Approach -
how do we harness our resources to create the sustainable product pipeline of the future?

Broaden Offering – create portfolio of opportunities

Create Higher Value – move up value chain; functionality, smart materials; *KEEP THE VALUE IN MINNESOTA*

Reduce Waste – higher yield, *lower cost*; reduced impact; *competitiveness*

Model Responsible Stewardship – demonstrate resource stewardship as *differentiators for competitive advantage*

Translate data into information for sound, long-term decision-making
Pilot-Scale Demonstration of Ilmenite Processing Technology

Background: Decades of Minnesota ilmenite (FeTiO$_3$) research but not commercialized due to high MgO content in concentrate

Goal: Produce high-purity iron and titanium products from Minnesota ilmenite. Scout vanadium and magnesium products for future.

Collaboration: Process Research Ortech (PRO) in Toronto, Ontario

Impact: NE Minnesota jobs; revenues from natural resources; more robust mining economy in Minnesota

Funding: IRRRB ($300k), UM ($150k), and UMD ($150k)
The Search for Higher-Value Products

- Iron Concentrate
- Iron Oxide Pellet
- DR Grade Pellet
- Iron Nuggets
- Iron Oxide Powder
- Titanium Dioxide Powder

Crude Iron Ore
Crude Ilmenite Ore

$10's $100's $1000's$
Hydrometallurgy Introduction
Ilmenite Demonstration Project

Ilmenite Ore

- High Silica Waste
- Road Patch & Surfacing

Concentrate

- HYDROMETALLURGY
 - High Purity
 - TiO₂
 - Fe₂O₃
 - V
 - Mg

Iron Tails

- HIGH VALUE IRON PRODUCTS
 - Nuggets
 - Pig Iron
Technical Results

- Upgraded ilmenite from ~25% to ~40% TiO$_2$; produced tons of ilmenite concentrate
- Produced 98.5% pure Fe$_2$O$_3$ powder
- Produced 99.3% pure TiO$_2$ powder baseline with 99.8% pure TiO$_2$ optimized value
- Inert solid tailings per Ontario Reg. 558; recycles majority of streams
- Geological models of Longnose deposit
Economic and Marketing Results

High-Level Economic Analysis:
- 60k TiO$_2$ plant CAPEX: estimated $164.2M
- 60k TiO$_2$ plant OPEX: estimated $713/ton production cost and mining 0.5 Mmtpa crude ore
- Potential for 150 jobs

Marketing Analysis for Titanium Dioxide Product:
- Paint/coatings industry, but obtain a supply agreement from producers with manufacturing facilities in the area.
- Plastics industry, but obtain a supply agreement from producers with manufacturing facilities in the area.
- Determine what products can use TiO$_2$ that currently do not (substitute an input). Find a specialty market.
- Determine what products currently use TiO$_2$ at small quantities, but are projected to increase demand above current overall market levels as the demand for the niche product increases.

Source: USGS Titanium
Project Management Results

- **Safety:** Zero incidents, near-misses, or injuries
- Expanded scope: iron oxide development, titanium purity optimization study, UMD CED marketing study
- Final report submitted May 25, 2017
- Finished approximately 6% under budget (~$36k)
Path Forward

- Hydrometallurgy capabilities at NRRI
- Opportunity for:
 - Optimization and variability studies
 - Additional characterization and drilling campaigns
 - Recovering additional metals from the process
 - Value-added products from iron oxide and titanium dioxide powders
- Networking with stakeholders
 - DNR, MPCA, local governments, etc.
 - Potential consumers, mine operators, engineering firms, marketing firms, etc.
- Pre-feasibility and complete feasibility studies
Thank you

Natural Resources Research Institute

Matt Mlinar
NRRI Program Manager – Mineral Processing
E: mmlinar@d.umn.edu